Thermodynamics vs. Kinetics

*+ Thermodynamics:

- To study the direction of a reaction, or if a reaction can
take place. (AG<0)

- To study the equilibrium states in which state variables of
a system do not change with time.

- Kinetics:
- To study the rates and paths of a reaction adopted by
the systems approaching equilibrium.
- To study the rate-limiting steps of a reaction
- To study the controlling factors of the rate-limiting steps

Kinetic Processes
* Rate-limiting steps
» Controlling factors

Input —p Output



Thermodynamics vs. Kinetics

A A I\
Initial Activated Final
State State State

Reaction Rate a (Kinetic factor) x (Thermodynamic factor)

* Kinetic factor relates to Q (activation energy), while the
thermodynamic factor relates to the driving force, AG=6G,-6,.

* The thermodynamic factor decides the direction of a reaction,
while the kinetic factor, the rate of reaction.



Kinetic theory: The reaction rate is proportional to the probability
to reach activated state that follows the Arrhenius
rate equation, exp(-Q /RT).

* The activation energy (Q) can be obtained from the slope of curve

plotted as In(reaction rate) vs. 1/T

Example: For diamond growth by CVD from reaction of methane and hydrogen
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Kinetic factor increased by changing temperature or
adding catalysts.

Activation energy (Q)
without catalyst

Activation energy (Q)
w

Reactants ith catalyst

Free Energy ->

AG<O

Products

Progress of Reaction

Examples: (1) N, + 3H, = 2NH; using iron as a catalyst
(2) 2CO + 2NO = 2CO, + N, using Pt and Rh as
catalysts for catalytic converters used in automobile



Pressure (Pa)

Examples: Thermodynamically favorable but
kinetically unfavorable phase changes

(1) Is a diamond forever?
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AG=-2.9KJ/mol

Graphite

Progress of Reaction




Volume, Enthalpy
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Diffusion driven by decrease in chemical potential

* Down-hill diffusion

2

1

A

Free energy of diffusion couple = G,
Diffusion taking place to homogenize
to obtain 6,

[ 4®
© 18> 1,2 2B diffusing from (1)—(2)
©wA> 1A >A diffusing from (2)—(1)

= Down-hill Diffusion
(o°



* Up-hill Diffusion

2 1

A Free energy of diffusion couple = G,
B Diffusion taking place to homogenize
to obtain 6,

B
2" 1 B< 4 ,B >B diffusing from (2)
to (1)

(%< 1A >A diffusing from (1)
to (2)

2>Up-hill Diffusion

B
“1 Driving force «o oK (notﬁ)

OX OX

J =CV:C-(B-F):C-B(—8—’U
OX

B : Mobility, F :Force




Diffusion:

Process by which matter is transported through matter as a result of
molecular motions

General scheme for transport phenomena

Flux a Driving force a 6radient in potential

Matter J a dC/dx a Concentration potential
Heat q a dT/dx a Temperature potential
Electricity I a d¢/dx a Electrical potential

J=-DVC (Fick's Law) D: diffusivity
q=-kVT (Fourier's Law) k: thermal conductivity
| =—cV¢ (Ohm's Law) o electrical conductivity



Fick's First Law:

Species migrates from a region of high concentration to a region of
low concentration ; in general the rate of diffusion is proportional to
the concentration gradient

1__po
OX

* Flux (J) : Mass/(area - time), e.g., g/(cm? - sec)
* Minus (-): Matter moves from high to low concentration.

* Diffusivity (D): Diffusivity related to atomic mobility and crystal
structure, e.g., cm?/sec (independent of
concentration gradient)

: : C
* Concentration gradient (Z—X ): 6radient in “Mass Potential,”
e.g., g-cm3/cm



Steady State:

Concentration at a given point

is invariant with time C
i.e. , C — C(X) é
(@ =0 §

ot S

*e

J#J(x,t) when area is fixed

Steady State Solution : C(x)=A+Bx=C, -

Co
X
L

X=0 X=L

Key: to describe C(x,t) quantitatively



Equilibrium State: No Flux

Ou
(5, =0 (

Steady State: constant flux if the area is fixed.
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Steady State:

J 1 J.1
| No Depletion or Accumulation | area is fixed
r
C
(a%t)x =0 ¢ Under any conditions
C
(@2C 5X2)t =0 » %()i = AA& when D is constant
J
0J _




Fick's Second Law
Transient State: C=C(x,t), or J=J(X,1)

(E)X #0— accumulation or depletion of concentration exists

}@rea)
Jx Jx+ >
—
Mass Conservation X x+AX
om oC

i JXA—JHAXA:EA'AX (A is fixed)

Flux - Area = Rate of change of concentration - volume
(g cm-2sec’!- cm? = g cm3sec! - cm3)

From Tavlor Series
. 3 A=, +Zaa=2C aax
OX ot
—a—JdX-AzﬁA-AX
OX ot




Fick's Second Law (cont.)
oC daJ O oC
- =S =2 (-D)
ot oOx OX OX
0°’C oC éD
-D— -
OX~ OX OX
0°'C_ac aboc,
ox* ox oC ox~ 1% D = D(C)

=-D

Steady State

oD C

when D=D(C)—> —==0 1 1
©=% N

oC 0°C
—=D -~ —> Fick's Second Law
ot OX

Linear partial differential equation

»Solutions are additive
> Solutions require initial and boundary conditions



Transient State:

J4

C

C

If J,<J; J
- Accumulation

| Depletion or Accumulation

1

t
(OC/L0x >0

oCc A

ot

%M\ X

OX

D

0°C
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Transient State --Thin-film solution @nfinite sink)

A quantity of solute, S, is plated as a thin film on one end of a long rod of solute-free
material, then a similar solute-free rod is welded to the plated end.

Annealed for time (t) > Determine concentration profile of the solute.
p

v

28]

Assuming D # D(x) (Constant diffusivity)

2
Fick's 2nd Law: %:Dg—g
ot OX

I.C. C(x,0)=0 |x|> o6
C(x,0)= C* |x|<6

B.C. C(,t)=0
C(-0,t)=0



Transient State --Thin-film solution @nfinite sink)

C(x.t) = X

)

S' 2
CXP(—
2~ 7Dt p( 4Dt

X (Distance)



Conservation of mass

| cxbdx=s'(=25C")

S'= g/cm? (Surface Concentration)

C*= g/cm3
General Solution: C(x t)—iex (— X ) (A: constant)
' ot P 4Dt |
. . S X
Particular Solution: C(x,t)= exp(— (Note:\/E >> 25)
(1) 2 Dt p( '4Dt)
S
- C(0,1) =
(01 2 7Dt ,
X
C(x,t) =C(0,t)exp(—
(X,t) = C(0,t) exp( 4Dt)
Taking the natural logarithm of both sides yields
2
ln(C(X’t)):— X
C(0,1) 4Dt

Thus a graph of In(C(x,t)/C(0,t)) against x> should yield a straight line
with a slope of —1/4Dt.



I - Determine D I

In[C(x,t)/C(0,1)]

-1/4Dt

XZ
ln(C(X ))vs x> is not a linear relation, D is a function of concentration.
CO.H Ifitis Imear' Dis mdependen’r of concentration.

C(x,t) =
(0= 2\/ Dt 4Dt

(1) Z—C ,_o= 0= Impermeable Boundary
X

S' 1
2)C(0,t) = C(0,t —
@COY="r =0 @ =

X _1- x=2/Dt
Dt
C(X,t)-zX/fexp( 1)_(:(O Y

X a Jt «this plane (x:2\/_) moves away from x=0.



Thin Film Solution
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Leak Test

Sample Dimension

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



The above analyses are only good for a thin film in the middle of

an "Infinite Bar". If it is not infinite, the diffusion will be reflected
back into the specimen when it reaches the end of the bar, and
concentration in that region will be higher than the above solution.

Q: How long is long enough to be considered infinite?
Leak Test

Arbitrarily taking 0.1% as a sufficiently insignificant concentration
' 2
[~ exp(—
0.1% = Jl C(X,t)dX 2 7Z'Dt p( 4Dt

OOC(x,t)dx [~
’ Jo 2\/ Dt 4Dt

Let u:L du = x

2Dt~ 2./Dt

X=0 U=

)dx
=107

X= U=—=

/Dt



8_ij exp(—u’)du

V7 s

j_jow exp(—u*)du
erfc(

)
= 2\/_ =1-erf(

107 =

2J_

2.1 =4.64/Dt  (Check the Table of Error Function)

The bar is considered to be long enough

> \/ g g

1> 4.6VDt to use a thin-film solution with 99.9%
accuracy.



Solution for a pair of Semi-infinite Solids

Cr —
—_—
0 % :
0 X

|.C. C(x,0)=0 x<0
C(x,0)=C' x>0
B.C. C(x,t)=C"
C(—o0,t)=0
Superposition
(1) No interaction from adjacent slabs
(2) Superposition of the distributions

from the individual slabs since the
diffusion equation is linear and additive.
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L Aa

0 o:<—»f x>
C'A ( )2
a
C.(x,t)=
(X,1) = 4Dl
Note: S=CA«a

Sum the soluTion of all thin slabs

ﬁ .21: A exp(—%)

Aa—>0 nNn—w

C(x,t)=

C(x,t)=

o).
2FJep( der

Substituting U = X—a da =-2+/Dtdu

2Dt~




a=0—->u S

2./Dt

o =0 —>U=-0

Cixt) = -2 | & exp(-u”)du

Jr e
reverse limits of integration and split integral
0 _X C'
C(x,t)=(| +|2/Pt)——exp(—u*)du
=+ ) 7= exp(-U)
By definition of error function

%L}Zexp(—uz)du
erf (w)=1 erf(0)=0
erf (- z)_—erf(z)

erf (z) =

C(x,t) = J_[I exp(—u*)du + jzf exp(—u*)du]
T
_C oz, f f ()
“Jr 2 J_
C

:7[l+erf (2—\/ﬁ)]



1 C
_— — =—[l+erf
G, “al gy
0.5erf (- X1)
2/t C 1
DXx>0 —=0.5+—erf
N A () . 5 (——= 5 ,—
X
i X <0 3:0.5—lerf(L)
C, 2 24/ Dt
0 | X C
2 =1—->—=0.921
(2) 2/ Dt C,
/ which varies with time as X = 2+/ Dt
Note: N c
If the concentration is fixed (C=C*), (all compositions except A =0.5).

the term of X /2+/Dt is then also fixed. c o1

This means that the penetration distance _ v L. o

is a function of the square root of (3)x=0- - (1mp1101t B.C)

the diffusion time. For example, if a

diffusion penetration of 0.1mm B B

develops in one hour, it will take (#) Jeeo _D— 0= __\/ ( to the left)

4 I '
ofhgezrfn:. develop a penetration (5) Total mass crosses the plane at x =0

Mt Dt
N _[O Jdt =-C, — (A:area)



The above analyses are only good for an "Infinite Slab".

If it is not infinite, the diffusion will be reflected

back into the specimen when it reaches the end of the bar, and
concentration in that region will be higher than the above solution.

Q: How long is long enough to be considered infinite?

Leak Test

Arbitrarily taking 0.1% as a sufficiently insignificant concentration

0.1% = 2! _ 2 2Dt~ _ o3




Using B.C. to solve the problem
X
t, )
2J/Dt
C(xo,t)=C =A+B
C(—oo,t)=0=A-B :>A:B=%
C' X
C(x,t)=
XO==1 ﬁ)]
Examples
1)if ¢(0,1)=0 C(x,t)=Cerf
(1) if C(O, 1) (X, 1) = (2\/—
(2) if C(0, 1) = C"=A, C(c0,1)=C
C(x,t)=C [1+erf 0
(X,t) = +er (2\/_)] X <
C_CH
= erf , X>0
C'—C" (2\/51:) >

(next page)



Error Function & its Derivatives

T (@)
| SA<
1
(4
v
(1) erf(Xx)
derf(Xx)) _ ..
(2) dx = (- )Flux
(3) d (Z:(fz(x)) = Accumulation
d?(erf(X))
(4) dx?

Note: (2) is the thin film solution



Diffusion from a Limited Source (thin film)

C(0,t) # constant

) J.OOOC(X,t)dX =S, — constant

2

S X
C(x,) = ——==exp(- o)

:Gaussian function
Example: p-n junction
C= Background Concentration

C>C (p—>norn—p)

X; = junction distance




Diffusion from a Constant Source

C(0,t)=C,
X
C(x,t)=C erfc(——
(x,t) =C, (2\/5)
0 Dt
M =A-j C(x,t)dx =2AC,,|—
0 T

: the amount of dopant entering the base

Example: p-n junction

C'= Background Concentration

C>C (p—>norn—p)

X .
C =C, erfc(—21—
0® (2\/Dt)

X; : Junction distance



Separation of Variables

1.0

C/C, 05

0

x/h

<>Series Solutions
<>Small system + long time
<-Real solution to all systems without assumptions of "Infinite System”

Assuming the solution can be represented by

C(x,1) = X(X)T (1)

oC 0°C
—=0D assumin D+ D(C
ot Ox? 8 (©)
2
X—dT =DT 0 )5
dt OX

X ()T (t)=DTX"



Divide both sides by C(x,t)

dT
X4 DTX

XT XT
T X

DT X

-
——— : function only of time
DT

e : function only of distance

Since they vary independently, both sides must be equal to a constant,
designated as - A 2 where 1 is a real nhumber

1 dT

—— =_2’D

T dt

2
T =T, exp(—=A"Dt)
where T, is a constant, - 1 2 is chosen because one deals with the system

in which any inhomogeneities disappear as time passes, i.e., T approaches
Zero as time increases.



The equationin X is
d°X
dx
the solution to this equation is of the form

+A*°X =0

X(X) = A sin(AX) + B’ cos(AX)

where A' and B' are functions of A
C(x,1) = X(X)T (1)
=T, exp(—A’Dt)(A sin AX + B’ cos AX)

= (Asin AX + B cos AX) exp(—1°Dt)

But if this solution holds for any real value of 4, then a sum of solutions
with different values of ) is also a solution. Thus in its most general form
the product solution will be infinite series of the form

C(x,t)= Z:[(A1 sin A X+ B. cos 4. X)exp(—A.>Dt)]
n=1



Example :“Diffusion out of a Slab”

C, - I.C. C(x,0)0=C, 0<x<h

B.C. C(x,t)=0 x=0and x=h

+C(0,t)=0=>B =0 C(x.1)= S [(A, sin 2,x + B, cos 4,X) exp(~2,2Dt)]
C(h,t) = 0 = the argument of s;rll A X 1s equal to zero

= A = n% where n is a positive integer
= C(x ) = Z (A, sin A X)(exp(-4,’Dt))
n=l1
C,=C(x,0)=> Asindx (0<x<h)
n=l1
- . Nz
:ZA]SIH(TX)_) A ="?
n=l1

Multiplying both sides by sin( p”V) and integrate X over the range of 0 < x < h to determine A,

)d —ZAJ‘ sm(

n # p—)ZAnjhsin( )sm(pﬂx) =0
n=1

0

p7zx

I C sm( )sm( )dx

© h h
_p—>ZAnj sm( %) sin (—)dx_z

0
n=




0
= j Cysin(* )dx = EO (- )cos(@) ide
h
_ 25 [cos(nio) cos( h)]: 2C, [1-cos(nx)]
nz h h nz
n:even - A =0
niodd =2j+1 > A =204 10
nt (2)+Drx
The solution is C(x,t) = +=0 L gin(2) +1)”X)exp( (2 +1)”) Dt)

o (2]+1)

Note: Each successive term is smaller than the preceding one, and the percentage
decreases between terms and increases exponentially with time. Thus after a short
time has elapsed, the infinite series can be satisfactorily represented by only a few
terms. To determine the error, we compar'e the ratio of the maximum values of the

first and second terms (R)
R 3exp(87[ Dt)
R=100 when h=4.75VDt
h2
>
(4.75)2 D

The error in using the first term to represent C(x,t) is less than 1% at all points.



Degassing of Metals

It is difficult Yo measure the concentration of gas at various depths, and what is
experimentally determined is the quantity of gas which has been given off or the
quantity remaining in the metal. Therefore, the average concentration (C) is used.

— 1 ¢h
C=0 jo C(x,t)dXx

_8C, & | (2i+D7

- ‘Dt
2 &ajy T )

When C(t)<0.8C, the first term is a good approximation to the solution or when t is
sufficiently large

3 (1st term is not

C _ exp (_ 1) J..a good approximation)
CO ) r 1| & is not linear
2

¥

—— D
T =

7D

— Large 7 —slow process

: relaxation time 4 ng

N|—

A\ 4



Solutions for Variable D

oC o0 ..0C, oJDoC 0°C
=—(D—)= +D—;
oD ot oOx OX  OX OX OX
‘ox makes this equation inhomogeneous, especially when D=D(C) or D(T) or D(t) or D(x).
The key in solving the above p.d.e. is to simplify the equation with x and t to x or t function.

Boltzman-Matano Analysis (D=D(C))
X

"k
6C aCony 1 x oC
ot op ot 2¢hon
6C aCéony 1 6C
ox on ox i on
1 x 8C & ,DéC

and

Therefore _Et% on 8X(\/E 877)
10 oC
=-——([D—)
ton Onp
oC o oC
1T =(D)

5677_877 on



Example: Infinite System [ . C(x.0)=Co x<0> 7 = -oo

C(x,0)=0 x>0> 7= o©

: C, * x=0 is not determined yet

: If D#D(C), C=C,/2 which determines x=0 for an
?o\rigim, interface INfinite system. However, if D=D(C) the above

: condition is no longer valid, the x=0 must be
determined by

ﬁTime Matano . J. OCO XdC =0

interface

1 C, which expresses the equality of the two shaded areas.

o
Equal area c oC
0 877
X=0 ' ' ' '
Matano L X gc-pEp-p popi L
inter ace\.l 2Jo \/E d(X) dx
c, Jt
1 ¢C _ dC c
C, _EJ‘O XdC —_ Dt& |0

Tangent=(dC/dx)




For an infinite system

9€ o when C=0 or C=C, .9 =0 Matano
dx dx interface \‘l
Therefore C

—ljc" xdC = Dtc(;—C|OC°
X

4 0
dx
j XdC =0 which is an additional boundary

condition and determines the
location of Matano interface.

X=0 Tangent=(dC/dx),.

x=0 plane (Matano interface) determined by
Co
_[0 xdC =0

, —1 d¥x
D(C 2—%)]



D(C) =

-1

dx

2t (ﬁ

#20

¢,
C, n
j€<— Original interface
. t=7
¢ \%Mamno interface

C i
)C'jo xdC :
0C 0C
SIO e:_ *> - * %
P PY% lc PY% lc

Diffusivity :D .. <D ...
c’ C,

Area:j XdC=_[**XdC
C, C



The Moving Boundary Problem

*Diffusion controlling process along with reaction at phase boundary

General Aspects

Co

* C; and C,;: equilibrium concentrations in

phases I and IL
2
*X>S oC _ D, g %
ot OX
2
ces Cu_p G
ot OX
* Diffusion controlling process
C: =kC;
K 'partition ratio between phases
x o~y 0S
*D( —D( H)xS Co=C 5

TR dS/ _
Kinetic Issue At_?



Decarburization

-

Temperature

= Concentration

M = 47 or
ac=ac

Free Energy

To have net diffusion flux
a T between o and y, the
thickness of o + v has to

‘ vanish.

Microstructure

Concentration




Carburization: a-Fe > y-Fe
Decarburization: y-Fe 2> a-Fe

Decarburization

Carburization

v +Fe;C

> C (W'l'°/o)

Decarburization
forming o phase
at the interface

Carburization
forming y phase
at the interface

i 2 ) x

ue :HS at x=S

where a and 'y coexist



Mass Conservation

(J,-J)A-dt= (CII -C*)A-dS

oC, U
ax %=
A: area for d1ffus1on. constant

JII J = DII( II)XS (D



Carburization

ds _,
dt -

known parameters:

¢, C, C, C, D and D



Example: Carburization

*Chemical activity of carbon at surface can be set up by

2CO—==C+CO,

k[COT
a, = ; or
[CO, ]
CH,—=2H,+C
_ k[CH,]
C PH22

*Rate of advance of boundary controlled by diffusion of carbon in Fe. Therefore
x=8 C, =kC,

(if C,=C, at x=S=reaction controlling process)
* C=C atx=§"
C=C atx=S"
* Semi-infinite solid

* D, #D(C) Df #D°

* AV, ,, =0 mass flux requiring no density correction



2
Fick's 2nd law Cy _ D¢ oC, X>S
ot « OX*
oC 0°C
L=D°—L 0<x<S
ot 7 OX
1C.:  C(x,0)=C,

B.C.:in «a phase
C=C, atx=S"
C=C, atx=ow

: in » phase
. . *
0 S C=C, atx=S"
C=C, atx=0
C(s,t)=C, =kC, (k:Partition Ratio)
J, Jo At x=S
Solute Solute * *
entering receiving (‘]7 —J,)dt = (C;/ —-C,)dS
oC oC . . dS
-DS (1), +DS(—=2), . =(C -C )—
P R 7( ax )X—S a( @X )x_s ( 14 a) dt

ds Note:(J, —J,)dt-A=(C, —C.)dS- A



In o phase

C,=A+B-erfc(—a—), x=w->C,=C,=A
2,/DSt

a

In y phase

C, =A+B"erf( ), X=3—>C, C Xx=0->C=C, =A"

2 or

C,(x,t)=C, +B-erfc(

2DC)

2o

At boundary x=3 - C, = Cy

C, (x,t)=C +B"erf(

C =C, +B"erf( )
’ 2./DCt

v

’ 0

C; and C are constants ( . diffusion controlling process)

S ) S
1S a constant too —
C C
2,/Drt 2,/Dt

S = 2,84/th where £ 1s a constant

. S
C,(S,t)=C =C,+B'erf(
’ ’ 2,/Dt

therefore

= /3 (constant)

)=C,+B'erf(p)



Similarly

23,/DCt
> )=C,+B -erfc(L)
2,/DSt 2Dt

C_ (S,t)=C, =C, +B-erfc(
C
Replace ¢ = D—é

o

C (5,t)=C, + B-erfc(,B¢%) oy

J_f exp(- 4Dt)|xs (2)
Eq.(D+(2)=(C, —Ci)(ﬁ

Szzﬂ\/ﬁ

= ﬂ \/ (N ote: it 1S not a constant)

eﬂ¢

Sl fﬂ fﬂf

C




C,+B'erf(8)= C; Use them to estimate B' and B,
% . and then to solve S
C, + Berfc(pg?)=C,

oo GC c' -,

CT npelert (B) Japg e erto(pe’)

— solve £ by trial and error

DC
— then we get S=24,/D;’t and ——ﬂ —

1

Jr Be” erfe(B)

B

Note: the only unknown parameter in the above equation is
(C,.C..C,,C,,D; and D; are known parameters)



Example: Decarburization
0.4% Carbon Alloy Steel
T=800°C
C.=0.01% (equilibrium by CO and CO,)
t=30min> S g2

Answer: C =0.4%, C.=0.01%
C.*=0.24%, C,*=0.02% (Obtained from Fe-C Phase Diagram)

D; =3x10"; D; =2x10" cm’/sec
C

p=—5=666

Cs —CZ - C: _CO
Jrpelerf (B)  zpp e eric(pp’)
(0.01-0.02) (0.24-0.4)

F(p) f(BF")
5, _ 001 (0.24-04)

B (")
by trial and error = £ =0.144 (see Figure)

S=24,/D°t=0.0173 cm

(C,-C)=

(0.02-0.24) =




Formation of a single-phase layer from an initial two-phase mixture
In the two- phase region, the average composi’rion C,. is assumed to be uniform,
which requires, in effecT that the grain size is small and that second-phase dispersion

is uniform. .
s 723<T<910°C 723<T<910°C
CII*-\S— om [ Co
— N Cul--=
Y | oy o | oty
[ - I S
S ~ S g
Carburization De-carburization
0\ T<723°C 0\
T>723"
a Co ’Y C Co
Cnl--——= o+Fe 3C Cul-——== |
|
Cs i . c. i y+Fe3C\
S ~ S ~
De-carburization De-carburization
CII (S t) = CII
. dS
DII( ” )x s (Cu _Co)_
dt
Cs _CII — Bzerf (B)
2
C* —_C. = Bz exp(—ﬁ )
I 0~ \/*
7p
1 C o

y ) Bexp(p°)ert (B)

eliminate

\/_ C:II



